DEGREE OF ACCURACY OF TWO-TERMED FORMULAS
FOR CALCULATING THE EFFECTIVE VISCOSITY OF
STRUCTURED LIQUIDS
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Two-termed formulas used in calculating the rheological curves of effective viscosity as a
function of shear stress in coagulative thixotropic systems are compared with each other.

Several two-termed formulas have been proposed in order to describe the effective viscosity as a
function of the uniform shear stress P during the stable laminar flow (Re < Rey) of structured thixotropic
systems (in this paper only thixotropic structures will be considered).

Thus Philipoff [1] proposes defining the effective viscosity by
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on the basis of phenomenological considerations.

The authors of [2] started from molecular kinetic representations, associated with the hole theory of
Frenkel' [7], and obtained the following formula for calculating the effective viscosity:

P
N(P) =My, + (N — M) — bp‘ (2
sh "
Yet another two-termed formula was proposed in [3]:
N (P) = Ny + (g — 1) “_!n;L ,
1+ <i — I)X

after allowing for the relationship between the flow velocity gradient, the Brownian motion, and the ex-
ternal shear stress.

In Eq. (2), b is a quantity determined from the structure parameters:
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Pj; is the shear stress corresponding to the bend on the flow curve, associated with the structure param-
eters.

Equations (1)-(3) were derived on the assumption that a single inflection existed on the curve relating
the effective viscosityto the shear stress. I addition to this, we may consider the problem of describing
the effective viscosity curve in terms of the flow velocity gradient rather than the stress. The problem is
encountered in this form when considering pseudoplastic systems.. Thus the following formula was pro-
posed in [8]:

No — n_f_ (5)
14 ae®?

n =1, +

This equation may be used for describing the effective viscosity curves of thixotropic systems if we
require that the curve described by Eq. (5) should have at least one point of inflection in a finite range of
variation of shear stress, i.e., d211/dé2 = 0. If we carry out the corresponding calculations we arrive at
the conditions:

1. =0,
2. 14 5us®® =0,

3. |+ =0.

Each of these conditions gives no real values of € for @ = 0 except £ = 0. Hence Eq. (5) describes the flow
(yield) curve of those pseudoplastic systems for which there are no points of inflection in a finite range of
variation of the flow velocity gradient. Equation (5) may therefore not be used to describe the curves of
effective viscosity in terms of the flow velocity gradient of thixotropic systems.

The following formula was proposed in [9] for describing the effective viscosity curves in terms of
the shear stress of pseudoplastic systems:

N =N + (Mg — M) eXp {— P}, (6)

It follows from the structure of this formula that there are no points of inflection on the curves which
it describes. Equation (6) may also therefore not be employed in order to describe the effective viscosity
of thixotropic structures.

In Rayner's book [10], fairly detailed attention was paid to the Ostwald power formula giving the de-
pendence of the flow ¢ on the uniform shear stress. The formula was criticized both by Rayner himself
and also in [11]. In the latter case, instead of the flow ¢ two dimensionless quantities ¢* and P* were
introduced; these were also related to each other by a power law and thus had the same disadvantages as
the Ostwald formula. In addition to this, the formula proposed in [11]

@* = exp {P*}

only described the ¢ (P) curve for the section lying above the inflection point. There is indeed a more ac~
curate expression for the ¢ (P) relationship, which was obtained in [3].

In view of these circumstances, only Egs. (1)-(3) were selected for comparison.

A comparative estimation of the accuracy of Egs. (1)-(3) at the points P = P]'t., P = P}n was given in
[4]; at these points Eq. (3) gave a result coinciding, by hypothesis, with experiment. The errors were
only indicated at the points P = Pi. and P = P;n, and no comparison was made with experiment at any other
points. Furthermore, Eq. (1) may only be used for calculating the effective viscosity of structured liquids
for which n¢/nm < 2, and (2) for ny/Mm < 10. No limitations are imposed upon 1ny/Mm in the case of (3).

Since none of the equations (1)-(3) is strictly accurate, any theoretical comparison between them
outside the points P = Py and P = P, presents serious difficulties.

In the present investigation we set ourselves the task of comparing the results of calculations based
on Egs. (1)~(3) at internal points of the segment [P'r, P}n] with experimental data embracing a wide range
of variation of viscosity, from one to several orders of magnitude.

All the calculations were carried out on the Ural-2 computer. In Egs. (1)-(3) the variable is the
stress P; the remaining quantities are known and constant for each curve. In the calculations we assumed
k=Py=Ppin (1) and k =b = Py in (2).
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TABLE 1. Comparison of the Effective Viscosities Calculated by
Egs. (1), (2), and (3)

Stress Experi- |Calculated viscosity
Materia] |/putdataforthe CalCUIa'p.l(ﬁ ' |mental according to
tion viscosity,
© [dyne/cmip ) @ | @
Printing PO:P;ZIOB dyne/cm2 1 3,1.108 | 1,55.10% | 2,6.10% | 3,1.108
dye b=P, =105 dyne/cm? 34 1308 | 266743 144 2106
MBS pri0v dyne/end 53 1062 | 108643 144 919
1=3,1.108p 70 466 62143 144 549
=144 P 101 246 30423 144 307
P,=240.10°dyne/cm? 135 198 | 16883 144 211
Py =158.10° dyne/cm? 158 186 12543 144 180
" y 177 171 9753 | 144 164
Db 5 1.108 207 159 7273 | 144 151
T
" 240 144 5529 | 144 144
299 144 3553 144 144
353 144 2623 144 144
BN-IV Py=4-10% dyne/cm® 1 1000 | 948 990 | 1000
bitumenat | b—4-10% dyne/cm’ 2 1000 823 975 1000
{ =120° C| P;=4-10° dyne/cm’ 4 1000 558 868 1000
no=1000 P 5 625 460 805 769
Nm=115 P 6,5 650 358 704 526
P,=20,5.10° dyne/cm?| 7,1 592 328 662 455
P =20.103 dyne/cm® 8,1 579 289 596 370
“ Y 9 450 261 539 323
Mo _g 7 9,5 365 248 490 294
i 10 294 237 478 278
12 240 203 380 | 208
14 219 181 302 172
16 160 167 | 244 147
18,6 127 154 | 193 125
19.3 111 151 183 120
20 — - = 117
20,5 115 147 168 115
23 116 131 147 115
Asphalt at | Py=1,5-10% dyne/cr® 0,5 50 48 49,5 50
1=80°C | p=1,5.10° dyne/cm’ 0,7 50 46 49 50
P,=1,5-10% dyne/cm? 1,6 50 39 46,7 50
1y==50P 2 40 36 4.6 39
Tm=28P 2,4 35,3 34 43 34
P, =3,1.10% dyne/cm? 2,8 3l 33 41 30
Piy=3-108 dyne/cm’ 3 28 32,4 40 28,6
3,1 28 32 39 28
o8 3,7 28 31 37 28
v
i 5 |27, (| 30 33 98
5,8 28 29 31 %8

In order to compare the accuracy of Egs. (1)-(3) with experimental data, we used the graphs of the
flow curves given in {5, 6]. The velocity gradient £ is determined from the flow curves, and the effective
viscosity from the equation

n="Pl. (7)

The resultant values of € and n were taken as the experimental data. The results of the calculations are
presented in Table 1. Table 2 gives the relative errors obtained by comparing the experimental data with
the values calculated from Egs. (1) and (2) at the characteristic points k = P}., 2Py, P, of the segment
{Pi., P]'m] for printing dye No. 53, where z{, z, are the relative errors in comparing Eqgs. (1) and (2) with

(3) [4].

We see from Tables 1 and 2 that Eqs. (1) and (2) give an unsatisfactory result for a ratio of no/nm

=2.1-10% Equation (3) gives a result close to the experimental value, and so may be recommended for
calculating the effective viscosity with a 1y/m4, ratio of the order of 108,
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TABLE 2. Relative Errors Obtained by Comparing the
Experimental Data with the Values Calculated from
Egs. (1) and (2) at the Characteristic Points Py, 2Py,
P}, of the Segment [P}, P}

2y ’ Rz
k=P, o ' i .
kb k=P, k=Pp, . k=P, k=Pp,
a) for printing dye No. 53
k=P 0,5 —0,000017| 0,15 0
k=9P 0,2 | -0,000069| 0,04009 ]
k=P, 0 —0,5 0 —0,15
by for BN-IV bitumen at t = 120°C
k=P, 0,5 | —o0,036 | 0,15 —0,0615
k=2P, 0,2 | —0,132 0,04009 | —0,384
k=P, 0,032 | —0,5 0,0063 0,15
¢) for asphalt at t = 80°C
k=P, 0,5 —0,189 0,15 0,532
k=2P, 0,2 —0,483 0,04 —0,842
k=P, 0,198 —0,5 (¢,037 —0,15

In order to determine the degree of accuracy of (1)-(3) when calculating an effective viscosity varying
within one order of magnitude (ny/Mm < 10); we use the experimental data obtained in {6] for BN-IV bitumen
at t = 120°C, 1/ = 8.7. In this case we see from Tables 1 and 2 that Eq. (1) has an average deviation of
29.5% from the experimental data on the S-shaped part of the curve, while the deviation of Eq. (2) is 36.1%
and that of Eq. (3) only 17%.

In the third example of Table 1 we used experimental data relating to the flow of asphalt at t = 80°C
[6] for which n¢/Mm = 1.8. This example was considered in view of the fact that Philipoff's [1] experimen-
tal verification of Eq. (1) was carried out for an ny/ny, ratio very close to this value. We see from Tables
1 and 2 that Eq. (1) gives an average deviation of 9% from the experimental data on the S-shaped part [2
+10%, 3-10%, while Eq. (2) gives one of 27% and Eq. (3) 3%.

NOTATION
n(P) is the effective viscosity;
Mg is the viscosity of the almost unbroken structure;
Tm is the viscosity of the completely disintegrated structure;
P is the uniform shear stress:
Py is a parameter chosen from experimental data;
P is the stress corresponding to the onset of the S-shaped part of the flow curve;

P is the stress corresponding to the end of the S-shaped part of the flow cutve;
k is Boltzmann's constant;

T is the absolute temperature;

6 is the distance between the solid-phase particles;

Neo is the viscosity corresponding to an infinite flow velocity gradient;

« is a sfructure parameter greater than zero;

o is the pressure-drop parameter;

£ is the flow velocity gradient;

Py is the shear stress corresponding to the point of inflection on the flow curve.
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